TikTok частично раскрыл принципы рекомендательных алгоритмов
Всё для того, чтобы доказать общественности и потенциальным покупателям, что алгоритмы, собственно, не «злые, манипулятивные, китайские и шпионские», а просто сверхэффективные и вовлекающие.
Суть следующая:
Когда пользователи впервые открывают TikTok, им показывают восемь популярных видео в разном стиле, с разной музыкой и на разные темы. Каждая новая итерация из 8 видео будет формироваться с учетом того, как пользователь взаимодействовал с предыдущей восьмеркой — в расчет идёт сама картинка на видео, с которым пользователь больше всего взаимодействовал, текстовые стикеры в видео, подписи и хэштеги к нему, музыка и звуки. Плюс, учитывается устройство, настройки учётки, язык, географию пользователя. И всё это — только первый этап.
Дальше больше.
Как только TikTok собирает достаточно данных о пользователе, приложение может сопоставить его предпочтения с предпочтениями других пользователей, и причислить нового пользователя к существующей группе со схожими интересами.Точно по такому же принципу группируются и видео.В итоге, используя машинное обучение, алгоритм показывает видео пользователю в зависимости от его близости с другими группами пользователей со схожими предпочтениями в контенте. Коллаборативная фильтрация, в общем.
Дополнительно, работа алгоритма направлена на то, чтобы избежать дублирования контента в ленте (просмотра нескольких видео с одной и той же музыкой или от одного и того же создателя)
Самое интересное: TikTok признает, что способность алгоритмов так эффективно учитывать предпочтения означает, что для пользователей, по сути, создаются «пузыри рекомендаций», за пределы которых выйти сложно — существующие предпочтения пользователей усиливаются, рекомендации становятся всё более узкими и фокусными, контент становится менее разнообразным, «однотонным», принципиально иной, свежий контент в ленту не попадает.
Сам TikTok эти «пузыри» изучает: среднее время жизни, методы образования и разрушения. Разработчики считают явление нежелательным: иногда это может портить пользовательский опыт (хотя судя по успешности приложения такого не скажешь), и способствовать лавинообразному распространению фейков среди аудитории (к примеру, человек, проявляющий интерес к теориям заговора, получит их в своей ленте сполна).
Что делать с этой информацией? Первое о чем мы подумали, прочитав громкий заголовок новости на Axios. Как минимум, на практике это можно использовать так:
Обязательно смотреть в аналитике аккаунта раздел «что популярно у моих подписчиков». По сути, оказывается, это список видео, с которыми вы с очень большой вероятностью находитесь в одной ленте прямо сейчас, а не просто подборка популярных видео.
Также раздел, скорее всего, значительно полезнее для профайлинга аудитории своего аккаунта, чем стандартная статистика по соцдему (гео, полу, возрасту). По сути, можно быстро понять, в каком «пузыре» вы находитесь. Аудитория может оказаться совсем не той, в которую вы целились изначально, пусть даже по соцдему она и подходящая.
Свою собственную ленту можно учить — теперь это не цифровая легенда. ?
55.388079286.1205047